Favorite posts
I mark my favorite posts with and aggregate them at Favorite PostsBlog
I tend to blog about technical topics, including interesting mathematics and cool applications of Python. A complete lists of my posts can be found at Blog.
PyTorch: fast and simple
Sep 7, 2017 in optimization computing speed framework
I recently came across PyTorch, a new technology prime for optimization and machine learning. The docs make it look attractive, so immediately I wondered “how does it compare with NumPy?”
Turns out it’s a pretty nice framework that’s fast and straightforward to use. I’ll detail the speed before talking about easeofuse.
Read on →

Holoviews interactive visualization
Jul 22, 2017 in datavisualization web
I often want to provide some simple interactive visualizations for this blog. I like to include visualization to give some sense of how the data change as various parameters are changed. Examples can be found in Finding sparse solutions to linear systems, Least squares and regularization, and Computer color is only kinda broken.
I have discovered a new tool, Holoviews to create these widgets. I want to create these interactive widgets for my blog, meaning I want to embed these in a static HTML page. Previously, I used Jake Vanderplas’s ipywidgetsstatic but in this post I’ll walk through creating a widget.
Read on →

Apple CoreML model conversion
Jun 11, 2017 in apple ios machinelearning
Apple has created a new file format for machine learning models. These files can be used easily to predict, regardless of the creation process, which means that “Apple Introduces Core ML” draws an analogy between these files and PDFs. It’s possible to generate predictions with only this file, and none of the creation libraries.
Generating predictions is a pain point faced by data scientists today and often involves the underlying math. At best, this involves using training the model in Python and then calling the underlying C library in the production app.
This file format will only become widely used if easy conversion from popular machine learning libraries is possible and predictions are simple to generate. Apple made these claims during their WWDC 2017 keynote. I want to investigate their claim.
Read on →

Atmosphere and entropy
Apr 9, 2017 in probability informationtheory
I recently learned an abstract mathematical theorem, and stumbled across a remarkably direct measure. I’ll give background to this theorem before introducing it, then I’ll show the direct measure of this theorem with physical data.
This theorem has to do with entropy, which is clouded in mystery. There are several types of entropy and, during the naming of one type, Von Neumann suggested the name “entropy” to Claude Shannon in 1948 because
In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage.
All posts →